What Color Is The Ieee 1394 Cable End

Typically color-coded in teal. A legacy connector that was a competitor to USB; also known as IEEE 1394. A high-speed data and power connection found on nearly every modern device. A modern connector that carries data, power, and video on a single cable.

FireWire 800 was introduced by Apple in 2003, allows an increase to 786.432 Mbit/s with backwards compatibility to the slower rates and 6-pin connectors of FireWire 400. However, while the IEEE 1394a and IEEE 1394b standards are compatible, FireWire 800s connector, referred to as a beta connector, is different from FireWire 400s alpha connectors, making legacy cables incompatible. A bilingual cable allows the connection of older devices to the newer port. The full IEEE 1394b specification supports data rates up to 3200 Mbit/s (i.e., 400 megabytes/s) over beta-mode or optical connections up to 100 metres (330 ft) in length. Standard Category 5e unshielded twisted pair supports 100 metres (330 ft) at S100.

Each node usually have three connectors, although the standard provides for 1 to 27 connector per a devices physical layer or PHY. Up to 16 nodes can be daisy-chained through the connectors with standard cables up to 4.5 m in length for a total standard cable length of 72 m. 1394 truly qualifies as a plug-and-play bus.

FireWire (also known as i.Link or IEEE 1394) is a personal computer / consumer electronic serial bus interface standard offering high-speed communications and isochronous real-time data services. The IEEE 1394-1995 standard for the High Performance Serial Bus defines a serial data transfer protocol. The capabilities of the 1394 bus are sufficient to support a variety of high-end digital audio/video applications, such as consumer audio/video device control and signal routing, home networking, nonlinear DV editing, and 32-channel (or more) digital audio mixing.

IEEE 1394 is a standard, platform-independent solution. Its features represent an evolutionary improvement over current I/O interfaces and provide connectivity solutions for many markets. Legacy I/O bridges attach serial and parallel interfaces to 1394. ANSI SCSI-3 provides a migration path for parallel SCSI to move to IEEE 1394. IEEE 1394 can interface with the higher layers of the new parallel port standard, IEEE 1284. Although IEEE 1284s 4 to 32 Mbps transfer rate is lower than that of 1394, 1284 finds application in printer connectivity since it is backward compatible with the existing Centronics parallel port. IEEE 1394 devices of differing transport rates may be interconnected, allowing backward compatibility with devices having slower transport rates. This feature allows 100 Mbps devices purchased today to operate properly in future bus configurations involving 200 and 400 Mbps devices.

The 1394 Trade Association announced that products would be available before the end of 2008 using the S1600 and S3200 modes that, for the most part, had already been defined in 1394b and were further clarified in IEEE Std. 1394-2008. The 1.572864 Gbit/s and 3.145728 Gbit/s devices use the same 9-conductor beta connectors as the existing FireWire 800 and are fully compatible with existing S400 and S800 devices. It competes with USB 3.0. S1600 (Symwave) and S3200 (Dap Technology) development units have been made, however because of FPGA technology DapTechnology targeted S1600 implementations first with S3200 not becoming commercially available until 2012.

The 1394 protocol is implemented by the three stacked layers shown in figure 2. The three layers perform the following functions:

:conn_ieee_1394_1.gif Fig. 1. Topology of a typical PC-based 1394 bus system for DV applications.

*The Sony DCR-VX700 and DCR-VX1000 camcorders and the DHR-1000 DVCR have only a single, non-standard 1394 connector to support DV input/output (output only in European versions). The four-conductor Sony connector, which is smaller than the standard 1394 connector and has only the signaling pairs (no power conductors), is defined in Part 1 of the draft of the proposed IEC standard and a forthcoming IEEE draft standard P1394.1. The Sony VMC-20V DV cable can interconnect two camcorders, but cannot connect to standard 1394 sockets without an adapter cable. These Sony camcorders act as terminating nodes and require a yet-undefined adapter for insertion as a leaf in a standard 1394 chain. DVCRs and other non-miniaturized consumer devices also use P1394.1 connectors.

The 1394 cable standard defines three signaling rates: 98.304, 196.608, and 393.216 Mbps (megabits per second; MBps in this paper refers to megabytes per second.) These rates are rounded to 100, 200, and 400 Mbps, respectively, in this paper and are referred to in the 1394 standard as S100, S200 and S400. Consumer DV gear uses S100 speeds, but most 1394 PC adapter cards support the S200 rate. The signaling rate for the entire bus ordinarily is governed by the slowest active node; however, if a bus master (controller) implements a Topology_Map and a Speed_Map for specific node pairs, the bus can support multiple signaling speeds between individual pairs. The 1394 Trade Association’s 1394.1 working group presently are refining and clarifying the setup requirements for handling interconnected devices with multiple signaling speeds.

Each node usually has three connectors, although the standard provides for 1 to 27 connector per a device’s physical layer or PHY. Up to 16 nodes can be daisy-chained through the connectors with standard cables up to 4.5 m in length for a total standard cable length of 72 m. (Using higher-quality “fatter” cables permits longer interconnections.) Additional devices can be connected in a leaf-node configuration, as shown in figure 1. All 1394 consumer electronic devices announced as of early 1997 have only a single connector; there are no currently are digital camcorders or VCRs that correspond to the devices with ID 3 or ID 5 shown in figure 1. Physical addresses are assigned on bridge power up (bus reset) and whenever a node is added or removed from the system, either by physical connection/disconnection or power up/down. No device ID switches are required and hot plugging of nodes is supported. Thus 1394 truly qualifies as a plug-and-play bus.


What is a 1394 cable?

FireWire, which is also called IEEE 1394, is a connecting device used primarily for adding peripherals to a computer. FireWire is often used for connecting external hard drives and digital camcorders that benefit from a high transfer rate. These transfer rates are often up to 800 Mbps.

Which ps2 connector is green?

Green denotes the mouse port. The PS/2 port has been superseded by the USB port.

How many devices can be connected to a single IEEE 1394 port?

The USB-C is known as the all-in-one connector. It is a one-cable solution with the ability to transmit power, audio, and video across a single cable from one mighty port.

Related Posts